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J. Phys. A : Gen. Phys., Vol. 5, June 1972. Printed in Great Britain 

Path integral for a three body problem 

D C KHANDEKAR and S V LAWANDE 
Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay. 
Bombay-85, India 

MS received 6 December 1971 

Abstract. A one dimensional three body problem is treated by the path integral approach of 
Feynman. When expressed in suitable coordinates, it is possible to extract the symmetry 
from the path integral of the problem. The resulting propagator is evaluated in a closed 
analytical form. 

1. Introduction 

The path integral formulation of Feynman (1948) offers an alternative way of solving 
dynamical problems in quantum mechanics. Instead of the usual Schrodinger equa- 
tion, this formulation considers the integral equation 

$(r”, t )  = K(r”,  r ‘ ,  t)$(r‘.  0) dr‘ ?  ̂
with the initial condition $(r”. 0) = $(r ’ ,  0); the propagator or the kernel K is defined 
by a path integral 

0”. r ‘ .  t )  = exp{iS(r”. r ’ ) }%r(t ) .  

Here, the integrations are over all possible paths, or histories, starting at r’ = r(0) and 
terminating at r“ = r ( t ) .  The function S(r”,  U’) in the integrand is the classical action 

S(r”, r ’ )  = !: L(i ,  U) dt (3) 

L(b, r )  being the Lagrangian of the system considered. 
Although this approach has a great deal of intuitive appeal, its applicability is 

limited because of the difficulty of evaluating the path integrals. Explicit expressions for 
the path integrals are available only for a few cases (Feynman and Hibbs 1965). Further, 
in most of the applications, calculations are done in Cartesian coordinates. Path integrals 
in polar coordinates were first considered by Edwards and Gulyaev (1964). The rele- 
vance of using polar coordinates is apparent when one considers, for example, the 
centrally symmetric potentials (Peak and Inomata 1969). 

In the present paper, we present an example where path integration in polars is 
exploited to solve a problem with a potential of a symmetry more general than central. 
This situation arises in connection with a three body problem considered by Calogero 
(1969). This problem involves three equal mass particles in one dimension, with equal 
strength harmonic forces between every two particles and an additional interaction 
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which varies as the inverse square of the interparticle distance between any one pair of 
particles. The example is interesting from the path integral point of view because the 
form of the inverse square potential (centrifugal potential) is responsible for a natural 
separation of the angular part (symmetry) from the propagator. The radial part can 
subsequently be evaluated analytically in the closed form. Furthermore, it is also 
possible to obtain an expansion of the propagator in terms of the eigenfunctions of the 
Schrodinger equation corresponding to the problem. Throughout this paper we use 
units such that h = m = 1, where m is the mass of the particles. 

2. Path integral for the three body problem 

The problem under consideration is characterized by the Lagrangian 

where tl, t2, t3 are the coordinates of the three particles, LU the angular frequency arising 
from the strength of the harmonic potentials and g is the strength of the inverse square 
potential acting between particles 1 and 2. We assume g > -$ to avoid the two body 
collapse (Landau and Lifshitz 1958). 

In order to obtain the path integral, we use the usual definition 

r I N  \ N - 1  

K ( < " , t ' ;  t )  = lim A ,  exp i C S(&j,kj-l) n dSj 
N- c J t j = 1  1 j =  1 

( 5 )  

where 6 stands for the triplet (tl, C 2 ,  t3), k j  = 6(tj), So = k', kN = r, t j  - t j -  = t /N  = E 

and A ,  is the normalization factor in the Nth approximation. The action S(Sj,Sj-l) 
over a small time interval t j -  t j -  = E may be approximated by 

If we now use the centre of mass (CM) and Jacobi coordinates 

r 1 + t 2 + r 3  = 3R 

t1  - r 2  = J 2 x  

4 1 + 4 2 - 2 < 3  = J6y 

the action S ( e j ,  <j-l) may be written as 
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where 
3 

So(Rj, Rj-  1 )  = 2 E  -(Rj- R j -  l)z 

3 o f r  gc - -(xf + yj’) - -. 
4 2xjxj- 1 

The separation of the action S into So and S allows us to write 

K(%”, t’, t )  = Ko(R”, R‘, t)R(x”. y” ; x’, J”. t) .  (9) 
Here K O  is a free particle propagator corresponding to the motion of the centre of mass. 
K represents the relative motion and is given by 

.v N - 1  

R(x“,y“;x‘,y‘, t) = lim B, S ( x j ,  y j ;  X ~ - ~ , J . ’ ~ - ~ ) )  n dxjdyj 
j =  1 N -  w 

where B, is the new normalization constant. 

coordinates ( r ,  8) 
The natural symmetry involved in K can be seen by going over to the ‘plane polar’ 

X r = ( ~ ~ + y ~ ) ’ / ~  

x = r sin 6, 

(0 < r < m) 

y = r cos 8. 

8 = tan-’- (0 < 8 < 27t) 
1.‘ 

( 1 1 )  

L = L o + L  (12a)  

L - 3 ’ 2  
0 - ZR 

In fact using equations (7) and (1 1) the Lagrangian L of equation (4) takes the form 

where 

i 12b) 

Indeed our aim is to obtain the path integral for a system with a Lagrangian given by 
equation (12). As discussed above, Lo which corresponds to CM motion yields the free 
particle propagator KO. The motion relative to the CM is described by E and is our 
main concern here. Classically L describes the motion of a single particle in a plane 
under a potential which contains a harmonic term and a term depending on both r and 8. 
This dependence of potential on r and 8 makes this problem new and more interesting 
than the ones that have been hitherto path integrated. With these remarks and dropping 
the bar on K and S we obtain 

1 
2€ 

= - { r f + r ; - l  - 2 r j r j - l  c0s(8,-8~-,)} 

€(aZ - t) 
2 r j r j -  sin O j  sin d j -  

- € V ( l j )  -___ 
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and the integrand of equation (IO) becomes 

) (13) 
r j r j - l  i@ -$) 

xexp - sin B j  sin B j -  - ( iE 2rjrj- sin O j  sin O j -  

where 

Noting that the asymptotic form of Za(u/e), the modified Bessel function, for small E, 
is given by 

1.j f )  (k) l i Z  exp( ,-2 U 1  ( u2 -a) i+O(.i)i 

we may replace the last exponential in equation (13) by 

with 

r . r .  
i 

U=- ’ ’-‘ sin o j  sin o j -  1 .  

Use of equation (16) and the expansion formula (Erdelyi 1953 p102) 

(sin c1 sin /l)l’z-AZA.- l12(z sin c1 sin /l) exp(z cos c1 cos 8) 

enables us to write equation (13) as 

exp i 1 S ( x j ,  y,; x j -  1 ,  y j -  Ni(sin ej  sin ej-  l)a+ l12cp,+ 1 ’ 2 ( ~ ~ ~  ej)  i N  j =  1 

where N ,  is the normalization factor of the Gegenbauer polynomial Cp’ li2(cos 6 )  
(Erdelyi 1953 p174) and 

RI(rj, r j -  = (2x1 exp -(r; + rf- I )  - icV(rj))Il+a+ ( y) . (20) (2, 
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Returning to equation (lo), we may write 

K(r” ,  0”; r’, Q‘, t )  = lim B, 1 J fi (Nt,(sin Q j  sin O j -  l)a+ lizC;li+ 1/2(cos d j )  
W +  I i l . i *  ..... / \  j = 1  

>v - 1 

x (27; 112(cos O j -  l ) R l j ( r j ,  r j -  1)) n r j  drj  dQj. (21) 

The angular integrations in equation (21) can easily be performed by using the ortho- 
gonality relation 

j =  1 

and the integral in equation (21) reduces to 

When this expression is substituted in equation (21). we see that for each quantum 
number I ,  the angular and radial contributions to the propagator are separable. Thus 

K(r”, 8“; r’, 8‘. t )  = (24) 

where 

I 

K,(r”, r‘. t)N:(sin H“ sin O’)N-’  ’Cy-’ ’(cos H”)Cf+’ ’(cos Ci‘) 
l = O  

\ - 1  

K,(r”, r‘. t )  = lim B ,  1 fi (Rl,(rJ.  r J -  1)) r,  dr, ( 2 5 )  
\ - x  J =  1 j =  1 

is the radial propagator of the 1 wave. Since K has to be unitary, the normalization factor 
is given by 

3. Evaluation of the radial propagator 

I t  now remains to evaluate the radial propagator of equation (25) ,  which may be written 
as 

where 

p = r(l p = / + a + $ .  (28) - 1  r = €  
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The integrations may be performed by repeated use of the formula (Peak and Inomata 
1969) 

i i(b2 + cz) Iom exp(iar2)l,( - ibr)l,( - icr)r dr = - 2a exp 

which is valid for Re (v) > - 1 and Re (a) > 0. The result is given by 

~ , ( r " ,  r', t) = lim aN exp(ip,r" + iqNr"2)1,( - iaNr'r") (30) 
N+ a (t ) 

where 

q&.=-- -  
4 f l N - 1  

Using the method of Peak and lnomata (1969) it is easy to show that 

lim aN = R cosec Rt 
N - m  

R 
lim pN = -cot Rt 

"33 2 

(33) 

(37) 

(38) 
R 

lim qN = -cot Rt 
N-33 2 

where 

n = J i m .  (39) 

Thus, the radial propagator finally reads as 

Kl(r",r ' ,  t) = - R exp - ( r ~ z + ~ ~ ~ z ) c o ~ ~ ~ ) ~ , . . , , , ( ~ ) .  in (40) 
( i smRt)  ( 2  

4. Schriidinger equation and the propagator 

We now show that the propagator can be expanded in terms of the eigenfunctions of the 
Schrodinger equation corresponding to the problem. 
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The Schrodinger equation for the problem, obtained after eliminating the CM motion 
and a subsequent transformation to ‘plane polar’ coordinates (r,  e), reads as 

-z  -+- -+- - $(r, 8 )+(+R2r2  + U(r ,  8))$(r, 8 )  = E$(r, d )  (41) 
I (  :r2 f r  r i  :;2) 

where U(r, 6 )  is the ‘centrifugal potential’ given by 

(42) 
g 

2r2 sin2 8’ U(r ,  e)  = 

The problem is separable in r and 8 and one obtains the following eigenfunctions and 
energy values : 

$nl(r, 8) = N n /  + a + exp( - 3Qr‘)Lf’ ’ 2(Rr2) 

x(sin8)““ ’Cy+’ ’(cos8) (0 6 8 6 71) (43) 

(44) 

Here, C: and Lf: are the Gegenbauer and Laguerre polynomials (Erdelyi 1953 pp174 
and 188) and R is defined by equation (39). 

On the other hand, as shown in 5 2, the path integral for the problem also separates 
into the angular and radial parts. This is equivalent to the separation of the symmetry 
of the problem arising from the special nature of the potential U(r, e). When evaluated, 
the radial part takes the closed form of equation (40). It is now possible to expand K, of 
equation (40) in terms of Laguerre polynomials using the Hille-Hardy formula (Erdelyi 
1953 equation (20) p189), to obtain 

E,, = (2n+E+a++)Q ) I ,  I = 0, 1 ,2 , .  . .  . 

( r ” r l ) l + a +  1 2 exp{ -+Q(r ”2+y ’2 ) }L f fa+  112 (Or”2)L!,+a- ’(!&’‘I. (45) 

Finally, using equation (45) in equation (24), it is easily verified that the propagator 

(46) 
L 

K(r” ,  8” ; r’, Q‘, t )  = 1 $nl(r” ,  8”)$nf(r’, 8’) exp( - iE,,t) 
n.1 = 0 

with $nf(r,  8 )  and E,, defined as in equations (43) and (44). 

5. Conclusions 

In this paper a one dimensional three body problem has been considered from the path 
integral point of view. The problem essentially involves the path integration of a system 
with the Lagrangian given in equations (12a-c). This Lagrangian has the interesting 
feature that the potential energy is the sum of a harmonic term and a ‘centrifugal’ term. 
The path integral, however, has been shown to be separable into a radial and an angular 
part. Physically this natural separation of symmetry from the propagator is related to 
the conservation of the quantity { p i  +(g/sin2 e ) }  where p e  is the ‘angular momentum’. 
Finally, the evaluation of the radial propagator in a closed form becomes possible as it 
involves only the harmonic part of the potential. 
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